Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Nanotechnology ; 33(43)2022 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-35835080

RESUMO

Ceramic materials with high surface area, large and open porosity are considered excellent supports for enzyme immobilization owing to their stability and reusability. The present study reports the electrospinning of aluminum silicate nanofiber supports from sol-gel precursors, the impact of different fabrication parameters on the microstructure of the nanofibers and their performance in enzyme immobilization. A change in nanofiber diameter and pore size of the aluminum silicate nanofibers was observed upon varying specific processing parameters, such as the sol-composition (precursor and polymer concentration), the electrospinning parameters and the subsequent heat treatment (calcination temperature). The enzyme, alcohol dehydrogenase (ADH), was immobilized on the aluminum silicate nanofibers by physical adsorption and covalent bonding. Activity retention of 17% and 42% was obtained after 12 d of storage and repeated reaction cycles for physically adsorbed and covalently bonded ADH, respectively. Overall, the immobilization of ADH on aluminum silicate nanofibers resulted in high enzyme loading and activity retention. However, as compared to covalent immobilization, a marked decrease in the enzyme activity during storage for physically adsorbed enzymes was observed, which was ascribed to leakage of the enzymes from the nanofibers. Such fibers can improve enzyme stability and promote a higher residual activity of the immobilized enzyme as compared to the free enzyme. The results shown in this study thus suggest that aluminum silicate nanofibers, with their high surface area, are promising support materials for the immobilization of enzymes.


Assuntos
Nanofibras , Álcool Desidrogenase/química , Alumínio , Silicatos de Alumínio , Enzimas Imobilizadas/química , Nanofibras/química
2.
J Hazard Mater ; 435: 129071, 2022 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-35650748

RESUMO

Nowadays, the increasing amounts of dyes present in wastewaters and even water bodies is an emerging global problem. In this work we decided to fabricate new biosystems made of nanofiltration or ultrafiltration membranes combined with laccase entrapped between polystyrene electrospun fibers and apply them for decolorization of aqueous solutions of three azo dyes, C.I. Acid Yellow 23 (AY23), C.I. Direct Blue 71 (DB71) and C.I. Reactive Black 5 (RB5). Besides effective decolorization of the permeate stream, the biosystems also allowed removal of dyes from the retentate stream as a result of enzymatic action. The effect of pH and applied pressure on decolorization efficiencies was investigated, and pH 5 and pressure of 2 bar gave the highest removal efficiencies of 97% for AY23 and 100% for both DB71 and RB5 from permeate solutions while decolorization of retentate for RB5 reached 65% under these conditions. Almost 100% decolorization of all dyes was achieved after three consecutive enzyme membrane cycles. Decolorization was shown to be due to the synergistic action of membrane separation and bioconversion. The biocatalytic action also enabled significant reduction of permeate and retentate toxicity, which is one of the biggest environmental health issues for these types of streams.


Assuntos
Compostos Azo , Lacase , Reatores Biológicos , Cor , Corantes , Tartrazina
3.
Chemosphere ; 304: 135374, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35718027

RESUMO

Enzymatic membrane reactors equipped with multifunctional biocatalytic membranes are promising and sustainable alternatives for removal of micropollutants, including steroid estrogens, under mild conditions. Thus, in this study an effort was made to produce novel multifunctional biocatalytic polyelectrolyte multilayer membranes via polyelectrolyte layer-by-layer assembly with laccase enzyme immobilized between or into polyelectrolyte layers. In this study, multifunctional biocatalytic membranes are considered as systems composed of commercially available filtration membrane modified by polyelectrolytes and immobilized enzymes, which are produced for complex treatment of water pollutants. The multifunctionality of the proposed systems is related to the fact that these membranes are capable of micropollutants removal via simultaneous catalytic conversion, membrane adsorption and membrane rejection making remediation process more complex, however, also more efficient. Briefly, cationic poly-l-lysine and polyethylenimine as well as anionic poly(sodium 4-styrenesulfonate) polyelectrolytes were deposited onto NP010 nanofiltration and UFX5 ultrafiltration membranes to produce systems for removal of 17α-ethynylestradiol. Images from scanning electron microscopy confirm effective enzyme deposition, whereas results of zeta potential measurements indicate introduction of positive charge onto the membranes. Based on preliminary results, four membranes with over 70%, activity retention produced using polyethylenimine in internal and entrapped mode, were selected for degradation tests. Systems based on UFX5 membrane allowed over 60% 17α-ethynylestradiol removal within 100 min, whereas NP010-based systems removed over 75% of estrogen within 150 min. Further, around 80% removal of 17α-ethynylestradiol was possible from the solutions at concentration up to 0.1 mg/L at pH ranging from 4 to 6 and at the pressure up to 3 bar, indicating high activity of the immobilized laccase over wide range of process conditions. Produced systems exhibited also great long-term stability followed by limited enzyme elution from the membrane. Finally, removal of over 70% and 60% of 17α-ethynylestradiol, respectively by NP010 and UFX5 systems after 8 cycles of repeated use indicate high reusability potential of the systems and suggest their practical application in removal of micropollutants, including estrogens.


Assuntos
Lacase , Polietilenoimina , Enzimas Imobilizadas/metabolismo , Estrogênios , Etinilestradiol , Lacase/metabolismo , Preparações Farmacêuticas , Polieletrólitos
4.
Membranes (Basel) ; 12(5)2022 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-35629868

RESUMO

The production of succinic acid from fermentation is a promising approach for obtaining building-block chemicals from renewable sources. However, the limited bio-succinic yield from fermentation and the complexity of purification has been making the bio-succinic acid production not competitive with petroleum-based succinic acid. Membrane electrolysis has been identified to be a promising technology in both production and separation stages of fermentation processes. This work focuses on identifying the key operational parameters affecting the performance of the electrolytic cell for separating succinic acid from fermentation broth through an anionic exchange membrane. Indeed, while efforts are mainly focused on studying the performance of an integrated fermenter-electrolytic cell system, a lack of understanding remains in how to tune the electrolytic cell and which main parameters are involved. The results show that a single electrolytic cell of operating volume 250 mL was able to extract up to 3 g L-1 h-1 of succinic acid. The production of OH- ions by water electrolysis can act as a buffer for the fermenter and it could be tuned as a function of the extraction rate. Furthermore, as the complexity of the solution in terms of the quantity and composition of the ions increased, the energy required for the separation process decreased.

5.
Bioorg Chem ; 123: 105781, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35395447

RESUMO

In this study, we present the concept of co-immobilization of xylose dehydrogenase and alcohol dehydrogenase from Saccharomyces cerevisiae on an XN45 nanofiltration membrane for application in the process of xylose bioconversion to xylonic acid with simultaneous cofactor regeneration and membrane separation of reaction products. During the research, the effectiveness of the co-immobilization of enzymes was confirmed, and changes in the properties of the membrane after the processes were determined. Using the obtained biocatalytic system it was possible to obtain 99% xylonic acid production efficiency under optimal conditions, which were 5 mM xylose, 5 mM formaldehyde, ratio of NAD+:NADH 1:1, and 60 min of reaction. Additionally, the co-immobilization of enzymes made it possible to improve stability of the co-immobilized enzymes and to carry out xylose conversion in six consecutive cycles and after 7 days of storage at 4 °C with over 90% efficiency. The presented data confirm the effectiveness of the co-immobilization, improvement of the stability and reusability of the biocatalysts, and show that the obtained enzymatic system is promising for use in xylose bioconversion and simultaneous regeneration of nicotinamide cofactor.


Assuntos
Álcool Desidrogenase , Xilose , Aldeído Redutase , Biocatálise , Regeneração
6.
Bioresour Technol ; 344(Pt B): 126201, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34710611

RESUMO

Enzymatic conversion of micropollutants into less-toxic derivatives is an important bioremediation strategy. This paper aims to critically review the progress in water and wastewater treatment by both free and immobilized enzymes presenting this approach as highly efficient and performed under environmentally benign and friendly conditions. The review also summarises the effects of inorganic and organic wastewater matrix constituents on enzymatic activity and degradation efficiency of micropollutants. Finally, application of enzymatic reactors facilitate continuous treatment of wastewater and obtaining of pure final effluents. Of a particular note, enzymatic treatment of micropollutants from wastewater has been mostly reported by laboratory scale studies. Thus, this review also highlights key research gaps of the existing techniques and provides future perspectives to facilitate the transfer of the lab-scale solutions to a larger scale and to improve operationability of biodegradation processes.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Enzimas Imobilizadas , Eliminação de Resíduos Líquidos , Águas Residuárias , Água , Poluentes Químicos da Água/análise
7.
Biotechnol Adv ; 54: 107798, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34265377

RESUMO

Engineering microenvironments for sequential enzymatic reactions has attracted specific interest within different fields of research as an effective strategy to improve the catalytic performance of enzymes. While in industry most enzymatic reactions occur in a single compartment carrier, living cells are however able to conduct multiple reactions simultaneously within confined sub-compartments, or organelles. Engineering multi-compartments with regulated environments and transformation properties enhances enzyme activity and stability and thus increases the overall yield of final products. In this review, we discuss current and potential methods to fabricate artificial cells for sequential enzymatic reactions, which are inspired by mechanisms and metabolic pathways developed by living cells. We aim to advance the understanding of living cell complexity and its compartmentalization and present solutions to mimic these processes in vitro. Particular attention has been given to layer-by-layer assembly of polyelectrolytes for developing multi-compartments. We hope this review paves the way for the next steps toward engineering of smart artificial multi-compartments with adoptive stimuli-responsive properties, mimicking living cells to improve catalytic properties and efficiency of the enzymes and enhance their stability.


Assuntos
Reatores Biológicos , Organelas , Redes e Vias Metabólicas , Organelas/metabolismo , Polieletrólitos/metabolismo
8.
Carbohydr Polym ; 271: 118430, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34364570

RESUMO

An enzymatic membrane reactor (EMR) with immobilized dextranase provides an excellent opportunity for tailoring the molecular weight (Mw) of oligodextran to significantly improve product quality. However, a highly efficient EMR for oligodextran production is still lacking and the effect of enzyme immobilization strategy on dextranase hydrolysis behavior has not been studied yet. In this work, a functional layer of polydopamine (PDA) or nanoparticles made of tannic acid (TA) and hydrolysable 3-amino-propyltriethoxysilane (APTES) was first coated on commercial membranes. Then cross-linked dextranase or non-cross-linked dextranase was loaded onto the modified membranes using incubation mode or fouling-induced mode. The fouling-induced mode was a promising enzyme immobilization strategy on the membrane surface due to its higher enzyme loading and activity. Moreover, unlike the non-cross-linked dextranase that exhibited a normal endo-hydrolysis pattern, we surprisingly found that the cross-linked dextranase loaded on the PDA modified surface exerted an exo-hydrolysis pattern, possibly due to mass transfer limitations. Such alteration of hydrolysis pattern has rarely been reported before. Based on the hydrolysis behavior of the immobilized dextranase in different EMRs, we propose potential applications for the oligodextran products. This study presents a unique perspective on the relation between the enzyme immobilization process and the immobilized enzyme hydrolysis behavior, and thus opens up a variety of possibilities for the design of a high-performance EMR.


Assuntos
Reatores Biológicos , Dextranase/química , Dextranos/química , Enzimas Imobilizadas/química , Membranas Artificiais , Oligossacarídeos/química , Proteínas de Bactérias/química , Biocatálise , Penicillium/enzimologia
9.
Bioorg Chem ; 114: 105036, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34120021

RESUMO

Immobilized enzymes find applications in many areas such as pharmacy, medicine, food production and environmental protection. However, protecting these biocatalysts against harsh reaction conditions and retaining their enzymatic activity even after several biocatalytic cycles are major challenges. Properly selected supports and type of surface modifier therefore seem to be crucial for achieving high retention of catalytic activity of immobilized biomolecules. Here we propose production of novel composite electrospun fibers from polystyrene/poly(d,l-lactide-co-glycolide) (PS/PDLG) and its application as a support for immobilization of oxidoreductases such as alcohol dehydrogenase (ADH) and laccase (LAC). Two strategies of covalent binding, (i) (3-aminopropyl)triethoxysilane (APTES) with glutaraldehyde (GA) and (ii) polydopamine (PDA), were applied to attach oxidoreductases to PS/PDLG. The average fiber diameter was shown to increase from 1.252 µm to even 3.367 µm after enzyme immobilization. Effective production of PS/PDLG fibers and biomolecule attachment were confirmed by Fourier transform infrared spectroscopy analysis. The highest substrate conversion efficiency was observed at pH 6.5 and 5 for ADH and LAC, respectively, and at 25 °C for enzymes attached using the APTES + GA approach. Improvement of enzyme stabilization at high temperatures was confirmed in that relative activities of enzymes immobilized onto PS/PDLG fibers were over 20% higher than those of the free biomolecules, and enzyme leaching from the support using acetate and MES buffers was below 10 mg/g.


Assuntos
Enzimas Imobilizadas/química , Oxirredutases/química , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Poliestirenos/química , Benzotiazóis/química , Biocatálise , Formaldeído/química , Concentração de Íons de Hidrogênio , Oxirredução , Estabilidade Proteica , Ácidos Sulfônicos/química , Temperatura
10.
Front Chem Sci Eng ; 15(4): 837-853, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33717607

RESUMO

Saccharide production is critical to the development of biotechnology in the field of food and biofuel. The extraction of saccharide from biomass-based hydrolysate mixtures has become a trend due to low cost and abundant biomass reserves. Compared to conventional methods of fractionation and recovery of saccharides, nanofiltration (NF) has received considerable attention in recent decades because of its high selectivity and low energy consumption and environmental impact. In this review the advantages and challenges of NF based technology in the separation of saccharides are critically evaluated. Hybrid membrane processes, i.e., combining NF with ultrafiltration, can complement each other to provide an efficient approach for removal of unwanted solutes to obtain higher purity saccharides. However, use of NF membrane separation technology is limited due to irreversible membrane fouling that results in high capital and operating costs. Future development of NF membrane technology should therefore focus on improving material stability, antifouling ability and saccharide targeting selectivity, as well as on engineering aspects such as process optimisation and membrane module design.

11.
Int J Biol Macromol ; 165(Pt B): 2049-2059, 2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-33086111

RESUMO

Composite polycaprolactone-chitosan material was produced by an electrospinning method and used as a support for immobilization of tyrosinase by mixed ionic interactions and hydrogen bonds formation. The morphology of the fibers and enzyme deposition were confirmed by SEM images. Further, multivariate polynomial regression was used to model the experimental data and to determine optimal conditions for immobilization process, which were found to be pH 7, temperature 25 °C and 16 h process duration. Under these conditions, novel type of biocatalytic system was produced with immobilization yield of 93% and expressed activity of 95%. Furthermore, as prepared system was applied in batch experiments related to biodegradation of bisphenol A under various remediation conditions. It was found that over 80% of the pollutant was removed after 120 min of the process, in the temperature range 15-45 °C and pH 6-9, using solutions at concentration up to 3 mg/L. Experimental data collected proved that the stability and reusability of the tyrosinase were significantly improved upon immobilization: the immobilized biomolecule retained around 90% of its initial activity after 30 days of storage, and was still capable to remove over 80% of bisphenol A even after 10 repeated uses. By contrast, free enzyme was able to remove over 80% of bisphenol A at pH 7-8 and temperature range 15-35 °C, and retained less than 60% of its initial activity after 30 days of storage.


Assuntos
Compostos Benzidrílicos/isolamento & purificação , Quitosana/química , Enzimas Imobilizadas/metabolismo , Monofenol Mono-Oxigenase/metabolismo , Fenóis/isolamento & purificação , Poliésteres/química , Agaricales/enzimologia , Biodegradação Ambiental , Enzimas Imobilizadas/ultraestrutura , Concentração de Íons de Hidrogênio , Monofenol Mono-Oxigenase/ultraestrutura , Espectroscopia de Infravermelho com Transformada de Fourier
12.
Materials (Basel) ; 12(19)2019 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-31569698

RESUMO

The conversion of biomass components catalyzed via immobilized enzymes is a promising way of obtaining valuable compounds with high efficiency under mild conditions. However, simultaneous transformation of glucose and xylose into gluconic acid and xylonic acid, respectively, is an overlooked research area. Therefore, in this work we have undertaken a study focused on the co-immobilization of glucose dehydrogenase (GDH, EC 1.1.1.118) and xylose dehydrogenase (XDH, EC 1.1.1.175) using mesoporous Santa Barbara Amorphous silica (SBA 15) for the simultaneous production of gluconic acid and xylonic acid. The effective co-immobilization of enzymes onto the surface and into the pores of the silica support was confirmed. A GDH:XDH ratio equal to 1:5 was the most suitable for the conversion of xylose and glucose, as the reaction yield reached over 90% for both monosaccharides after 45 min of the process. Upon co-immobilization, reaction yields exceeding 80% were noticed over wide pH (7-9) and temperature (40-60 °C) ranges. Additionally, the co-immobilized GDH and XDH exhibited a significant enhancement of their thermal, chemical and storage stability. Furthermore, the co-immobilized enzymes are characterized by good reusability, as they facilitated the reaction yields by over 80%, even after 5 consecutive reaction steps.

13.
Mater Sci Eng C Mater Biol Appl ; 103: 109789, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31349507

RESUMO

Enzymatic biodegradation of pharmaceuticals, using enzymes such as laccase, is a green solution for the removal of toxic pollutants that has attracted growing interest over recent years. Moreover, the application of immobilized biocatalysts is relevant for industrial applications, due to the improved stability and reusability of the immobilized enzymes. Thus, in the present study, laccase was immobilized by adsorption and encapsulation using poly(l-lactic acid)-co-poly(ε-caprolactone) (PLCL) electrospun nanofibers as a tailor-made support. The produced biocatalytic systems were applied in the biodegradation of two commonly used anti-inflammatories, naproxen and diclofenac, which are present in wastewaters at environmentally relevant concentrations. The results showed that under optimal process conditions (temperature 25 °C, pH 5 and 3 for naproxen and diclofenac respectively), even from a solution at a concentration of 1 mg L-1, over 90% of both pharmaceuticals was removed by encapsulated laccase in batch mode. Both immobilized enzymes also exhibited high reusability: after five reaction cycles approximately 60% and 40% of naproxen and diclofenac were removed by encapsulated and adsorbed laccase respectively. In addition, a thorough analysis was made of the products of biodegradation of the two studied pollutants. Furthermore, toxicity study of the mixture after biodegradation of the pharmaceuticals showed that the solutions obtained after the process were approximately 65% less toxic than the initial naproxen and diclofenac solutions.


Assuntos
Biodegradação Ambiental , Diclofenaco/metabolismo , Lacase/metabolismo , Nanofibras/química , Naproxeno/metabolismo , Animais , Artemia/efeitos dos fármacos , Biocatálise , Diclofenaco/química , Estabilidade Enzimática , Enzimas Imobilizadas/metabolismo , Reutilização de Equipamento , Concentração de Íons de Hidrogênio , Naproxeno/química , Poliésteres/química , Temperatura , Poluentes Químicos da Água/química , Poluentes Químicos da Água/metabolismo , Poluentes Químicos da Água/toxicidade
14.
Membranes (Basel) ; 9(6)2019 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-31163624

RESUMO

Although forward osmosis (FO) membranes have shown great promise for many applications, there are few studies attempting to create a systematization of the testing conditions at a pilot scale for FO membrane modules. To address this issue, hollow fiber forward osmosis (HFFO) membrane modules with different performances (water flux and solute rejection) have been investigated at different operating conditions. Various draw and feed flow rates, draw solute types and concentrations, transmembrane pressures, temperatures, and operation modes have been studied using two model feed solutions-deionized water and artificial seawater. The significance of the operational conditions in the FO process was attributed to a dominant role of concentration polarization (CP) effects, where the selected draw solute and draw concentration had the biggest impact on membrane performance due to internal CP. Additionally, the rejection of the HFFO membranes using three model solutes (caffeine, niacin, and urea) were determined under both FO and reverse osmosis (RO) conditions with the same process recovery. FO rejections had an increase of 2% for caffeine, 19% for niacin, and 740% for urea compared to the RO rejections. Overall, this is the first extensive study of commercially available inside-out HFFO membrane modules.

15.
Biotechnol Adv ; 37(7): 107401, 2019 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-31128206

RESUMO

In the modern era, the use of sustainable, environmentally friendly alternatives for removal of recalcitrant pollutants in streams resulting from industrial processes is of key importance. In this context, biodegradation of phenolic compounds, pharmaceuticals and dyes in wastewater by using oxidoreductases offers numerous benefits. Tremendous research efforts have been made to develop novel, hybrid strategies for simultaneous immobilization of oxidoreductase and removal of toxic compounds. The use of support materials with the options for combining enzyme immobilization with adsorption technology focused on phenolic pollutants and products of biocatalytic conversion seems to be of particular interest. Application of enzymatic reactors based on immobilized oxidoreductases for coupling enzyme-aided degradation and membrane separation also attract still growing attention. However, prior selection of the most suitable support/sorbent material and/or membrane as well as operational mode and immobilization technique is required in order to achieve high removal efficiency. Thus, in the framework of this review, we present an overview of the impact of support/sorbent material on the catalytic properties of immobilized enzymes and sorption of pollutants as well as parameters of membranes for effective bioconversion and separation. Finally, future perspectives of the use of processes combining enzyme immobilization and sorption technology as well as application of enzymatic reactors for removal of environmental pollutants are discussed.


Assuntos
Biocatálise , Adsorção , Biodegradação Ambiental , Poluentes Ambientais , Enzimas Imobilizadas
16.
Bioorg Chem ; 93: 102747, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-30739714

RESUMO

Enzymatic cofactor-dependent conversion of monosaccharides can be used in the bioproduction of value-added compounds. In this study, we demonstrate co-immobilization of xylose dehydrogenase (XDH, EC 1.1.1.175) and alcohol dehydrogenase (ADH, EC 1.1.1.1) using magnetite-silica core-shell particles for simultaneous conversion of xylose into xylonic acid (XA) and in situ cofactor regeneration. The reaction conditions were optimized by factorial design, and were found to be: XDH:ADH ratio 2:1, temperature 25 °C, pH 7, and process duration 60 min. Under these conditions enzymatic production of xylonic acid exceeded 4.1 mM and was more than 25% higher than in the case of a free enzymes system. Moreover, the pH and temperature tolerance as well as the thermo- and storage stability of the co-immobilized enzymes were significantly enhanced. Co-immobilized XDH and ADH make it possible to obtain higher xylonic acid concentration over broad ranges of pH (6-8) and temperature (15-35 °C) as compared to free enzymes, and retained over 60% of their initial activity after 20 days of storage. In addition, the half-life of the co-immobilized system was 4.5 times longer, and the inactivation constant (kD = 0.0141 1/min) four times smaller, than those of the free biocatalysts (kD = 0.0046 1/min). Furthermore, after five reaction cycles, immobilized XDH and ADH retained over 65% of their initial properties, with a final biocatalytic productivity of 1.65 mM of xylonic acid per 1 U of co-immobilized XDH. The results demonstrate the advantages of the use of co-immobilized enzymes over a free enzyme system in terms of enhanced activity and stability.


Assuntos
Álcool Desidrogenase/metabolismo , Oxirredutases do Álcool/metabolismo , Coenzimas/metabolismo , Xilose/análogos & derivados , Xilose/metabolismo , Álcool Desidrogenase/genética , Oxirredutases do Álcool/química , Coenzimas/química , Enzimas Imobilizadas , Concentração de Íons de Hidrogênio , Temperatura , Xilose/química
17.
Colloids Surf B Biointerfaces ; 175: 136-142, 2019 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-30529819

RESUMO

Alcohol dehydrogenase from Saccharomyces cerevisiae was immobilized on different inorganic support materials, i.e. powders of Al2O3, SiC, TiO2 and YSZ-8, by covalent bonding and physical adsorption. The raw powders were characterized by scanning electron microscopy, BET surface area, particle size distribution and ζ-potential measurements. Enzyme activity retention, storage stability and recyclability were evaluated on the basis of the measured support material properties. Preliminary experiments showed that the buffer selection was a critical factor. The properties of both the enzyme and the powders varied considerably between the buffers used; namely Tris-HCl (100 mM, pH 7) and MES (40 mM, pH 6.5) buffers. The enzyme activity was higher and more stable in the MES buffer, whereas the commonly used Tris buffer was problematic due to apparent incompatibility with formaldehyde. In MES, the order of decreasing activity of covalently bonded enzyme was on SiC > YSZ-8 > Al2O3 > TiO2. The lower performance of TiO2 was ascribed to the negative ζ-potential of the material, which impeded an efficient immobilization. Particle agglomeration, caused by low colloidal stability of the particles in MES buffer, hampered the storage stability of the immobilized systems. The results from this study show the advantages and limitations of using nanoparticles as immobilization supports, and highlight which properties of nanoparticles must be considered to ensure an efficient immobilization.


Assuntos
Álcool Desidrogenase/química , Enzimas Imobilizadas/química , Compostos Inorgânicos/química , Proteínas de Saccharomyces cerevisiae/química , Adsorção , Álcool Desidrogenase/metabolismo , Álcool Desidrogenase/ultraestrutura , Óxido de Alumínio/química , Soluções Tampão , Estabilidade Enzimática , Enzimas Imobilizadas/metabolismo , Concentração de Íons de Hidrogênio , Cinética , Microscopia Eletrônica de Varredura , Nanopartículas/química , Pós , Proteínas de Saccharomyces cerevisiae/metabolismo , Propriedades de Superfície , Titânio/química
18.
Adv Colloid Interface Sci ; 258: 1-20, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30075852

RESUMO

Bioremediation, a biologically mediated transformation or degradation of persistent chemicals into nonhazardous or less-hazardous substances, has been recognized as a key strategy to control levels of pollutants in water and soils. The use of enzymes, notably oxidoreductases such as laccases, tyrosinases, various oxygenases, aromatic dioxygenases, and different peroxidases (all of EC class 1) is receiving significant research attention in this regard. It should be stated that immobilization is emphasized as a powerful tool for enhancement of enzyme activity and stability as well as for protection of the enzyme proteins against negative effects of harsh reaction conditions. As proper selection of support materials for immobilization and their performance is overlooked when it comes to comparing performance of immobilized enzyme in academic studies, this review summarizes the current state of knowledge regarding the materials used for enzyme immobilization of these oxidoreductase enzymes for environmental applications. In the presented study, thorough physicochemical characteristics of the support materials was presented. Moreover, various types of reactions and notably operational modes of enzymatic processes for biodegradation of harmful pollutants are summarized, and future trends in use of immobilized oxidoreductases for environmental applications are discussed. Our goal is to provide an improved foundation on which new technological advancements can be made to achieve efficient enzyme-assisted bioremediation.


Assuntos
Enzimas Imobilizadas/química , Enzimas Imobilizadas/metabolismo , Oxirredutases/química , Oxirredutases/metabolismo , Biodegradação Ambiental , Carbono/química , Carbono/metabolismo , Minerais/química , Minerais/metabolismo , Óxidos/química , Óxidos/metabolismo , Polímeros/síntese química , Polímeros/química , Polímeros/metabolismo , Dióxido de Silício/química , Dióxido de Silício/metabolismo
19.
Biotechnol Biofuels ; 11: 85, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29619081

RESUMO

BACKGROUND: Lignin is known to hinder efficient enzymatic conversion of lignocellulose in biorefining processes. In particular, nonproductive adsorption of cellulases onto lignin is considered a key mechanism to explain how lignin retards enzymatic cellulose conversion in extended reactions. RESULTS: Lignin-rich residues (LRRs) were prepared via extensive enzymatic cellulose degradation of corn stover (Zea mays subsp. mays L.), Miscanthus × giganteus stalks (MS) and wheat straw (Triticum aestivum L.) (WS) samples that each had been hydrothermally pretreated at three severity factors (log R0) of 3.65, 3.83 and 3.97. The LRRs had different residual carbohydrate levels-the highest in MS; the lowest in WS. The residual carbohydrate was not traceable at the surface of the LRRs particles by ATR-FTIR analysis. The chemical properties of the lignin in the LRRs varied across the three types of biomass, but monolignols composition was not affected by the severity factor. When pure cellulose was added to a mixture of LRRs and a commercial cellulolytic enzyme preparation, the rate and extent of glucose release were unaffected by the presence of LRRs regardless of biomass type and severity factor, despite adsorption of the enzymes to the LRRs. Since the surface of the LRRs particles were covered by lignin, the data suggest that the retardation of enzymatic cellulose degradation during extended reaction on lignocellulosic substrates is due to physical blockage of the access of enzymes to the cellulose caused by the gradual accumulation of lignin at the surface of the biomass particles rather than by nonproductive enzyme adsorption. CONCLUSIONS: The study suggests that lignin from hydrothermally pretreated grass biomass retards enzymatic cellulose degradation by acting as a physical barrier blocking the access of enzymes to cellulose rather than by inducing retardation through nonproductive adsorption of enzymes.

20.
Macromol Rapid Commun ; 39(2)2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29065219

RESUMO

Thiol-ene (TE)-based polymer particles are traditionally prepared via emulsion polymerization in water (using surfactants, stabilizers, and cosolvents). Here, a green and simple alternative is presented with excellent control over particle size, while avoiding the addition of stabilizers. Glycerol is applied as a dispersing medium for the preparation of off-stoichiometric TE microparticles, where sizes in the range of 40-400 µm are obtained solely by changing the mixing speed of the emulsions prior to crosslinking. Control over surface chemistry is achieved by surface functionalization of excess thiol groups via photochemical thiol-ene chemistry resulting in a functional monolayer. In addition, surface chain transfer free radical polymerization is used for the first time to introduce a thicker polymer layer on the particle surface. The application potential of the system is demonstrated by using functional particles as adsorbent for metal ions and as a support for immobilized enzymes.


Assuntos
Glicerol/química , Compostos de Sulfidrila/síntese química , Radicais Livres/síntese química , Radicais Livres/química , Estrutura Molecular , Tamanho da Partícula , Processos Fotoquímicos , Polimerização , Polímeros/síntese química , Polímeros/química , Compostos de Sulfidrila/química , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...